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Three-Dimensional Field Solutions for Multi-Pole Cylindrical 
Halbach Arrays in an Axial Orientation 

 
William K. Thompson 

National Aeronautics and Space Administration 
Glenn Research Center 
Cleveland, Ohio 44135 

1. Introduction 
Uses for the so-called Halbach array of permanent magnets have grown in number in recent years. 

The salient feature of the Halbach array is the unique placement of individual permanent magnets such 
that the B field is concentrated on one side of the array and canceled on the other. This useful and 
intuitively efficient property exists for both linear and cylindrical arrays (ref. 1). In addition to the 
inventor’s original designs for particle beam focusing mechanisms and undulators, one may now find 
Halbach arrays in a number of applications, including high-performance motors and generators (ref. 2), 
frictionless passive magnetic bearings and couplers (refs. 2 and 6) and magnetically levitated trains (ref. 3).  

This article presents three-dimensional B field solutions for the cylindrical Halbach array in an axial 
orientation. This arrangement has applications in the design of axial motors and passive axial magnetic 
bearings and couplers. The analytical model described here assumes ideal magnets with fixed and 
uniform magnetization. The model also assumes a sufficiently large number of magnets (Nm ≥ 16) 
comprise the Halbach array so that the angular span of each individual magnet is kept small. This permits 
modeling its magnetization as arising from a sum of four surface currents. The field component functions 
are expressed as sums of 2-D definite integrals that are easily computed by a number of mathematical 
analysis software packages. The solutions are found to be sinusoidal functions of angular position (with 
additional harmonics present at axial distances that are small compared to the magnet thickness), 
exponential functions of axial distance from the magnets and more complex functions of radial position 
that must be computed numerically. The analysis is verified with sample calculations and the results are 
compared to equivalent results from traditional finite-element analysis (FEA). The field solutions are then 
approximated for use in flux linkage and induced EMF calculations in nearby stator windings by 
expressing the field variance with angular displacement as pure sinusoidal function whose amplitude 
depends on radial and axial position. The primary advantage of numerical implementation of the 
analytical approach presented in the article is that it lends itself more readily to parametric analysis and 
design tradeoffs than traditional FEA models. 

2. Magnetic Field Theory of The Axial Halbach Array 
Figure 1 shows the cylindrical Halbach array in an axial orientation. The term “axial Halbach array” 

will be used from this point forward to refer to this configuration. The array depicted is comprised of 
Nm = 32 sector shaped permanent magnets with inner radius r1, outer radius r2, and axial thickness T. 
Assume that Nm ≥ 16 so that the angle in radians spanned by each magnet is small compared with 2π. 
There are four magnets per Halbach wavelength in the angular (φ) direction. Each sector in the array has 
an index s, where s = [0, 1, … Nm-1]. The magnets each have a magnetization M = ±Br/μo whose direction 
is indicated by the arrows. Br is the remanent magnetization of the permanent magnet material.  

Field calculations require the definition of two overlapping coordinate systems, one Cartesian and the 
other cylindrical. The cylindrical rφ plane aligns with the Cartesian xy plane, so that the z coordinates of 
each system are identical. The +x axis of the Cartesian system lies at φ = 0 in the cylindrical system. The 
field solutions will be found at any arbitrary point in space, which defines a vector in the cylindrical 
system given by r  = (r r̂  + φφ̂  + z ẑ ). The vector giving the location of the integration variable is  



NASA/TM—2006-214359 2

 
 
 

designated by primes, i.e., 'r = (r′ r̂  + φ′ φ̂  + z′ ẑ ). The distance between these two points is given by 
Green’s function 
 

 G( r , 'r ) = 
2 2 2

1 1
| ' | ' ( ') 2 'cos( ')r r r r z z rr φ φ

=
− + + − − −  (1)

 

 
The array lies in the Cartesian system such that the +z axis corresponds to the axis of rotation and the 

flat bottom faces of the sectors lie in the xy plane. Hence, z1 = 0 and z2 = T. The s = 0 magnet is selected 
to be magnetized in the axial (+z) direction and the +x axis bisects the flat bottom surface of this magnet. 
Magnets lying on the –x, +y, and –y axes also bear this same direction of magnetization. The sth magnet 
has a central radial axis which lies at angle φ = βs = 2 π s/Nm. Each magnet subtends an angle in the 
φ direction of β2 – β1 = 2 π /Nm radians, where β2 and β1 are the locations of the side faces. 

 
 

The magnetic field component solutions are expressed in cylindrical coordinates as  
 
 ( , , ) { , , }r zB r z B B Bφφ =  (2) 
 
and these may be transformed to Cartesian coordinates using 
 
 ( , , ) { cos sin , sin cos , }r r zB x y z B B B B Bφ φφ φ φ φ= − +  (3) 
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Using the principle of linear superposition, one may express the aggregate field components as the 
sum of individual contributions from each sector in the array. For any axially magnetized (±z) magnet in 
the array, the B field components may be calculated from the vector potential and expressed as sums of 
definite integrals in two of the spatial dimensions as determined previously (ref. 4): 
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Note that +M is used for +z magnetization and –M is used for –z magnetization. In a similar manner, 

expressions for the field components for an individual transversely magnetized sector may be expressed 
in the following equations, which are derived in the appendix of this article. 
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Here the assumption of sufficiently large Nm becomes particularly important as the magnetization is 

not truly azimuthal but linear and perpendicular to the radial axis of the magnet at φ = βs. Note that +M is 
used for +φ magnetization and –M is used for –φ magnetization.  

The contributions of each magnet in the array add to give the aggregate solution. Starting at the s = 0 
magnet and traveling around the array in the +φ direction, the magnetization directions repeat the pattern 
{ ẑ+ , φ̂+ , ẑ− , φ̂− , ẑ+  …}. 

Therefore, the magnetizations for each sector in the array are  
 
 Axial Case:        ˆ( 1)nM Mz= −  (6a) 
 Transverse Case: ˆ( 1)nM Mφ= −  (6b) 
 

A new indexing variable n has been defined to account for the interleaving of axially and transversely 
magnetized sectors. One may express the angular position of each axially magnetized sector as  
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Similarly, each transversely magnetized sector is located at an angular position  
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this yields the field components for the entire collection as 
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These expressions define the B field components at any point in space. They may be easily 

implemented in a variety of commercial mathematical analysis software packages. We used Mathematica 
v5.2 (Wolfram Research, Inc). Special care must be taken to observe the signs of each of the terms, which 
are dictated by the j variable of summation. 
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3. Results and Validation of Field Solutions 
 

The analytical expressions for the B field components given in section 2 have been coded in 
Mathematica. This product permits easy numerical implementation of the definite integrals using the 
built-in NIntegrate[] function. The working precision for the numerical integrations was set to 50 digits 
and the accuracy goal to five decimal places. Equivalent FEA models were also developed in Maxwell 3D 
v10 (Ansoft, Inc.). The validation method compares the results of these two independent models of the 
same axial Halbach array. 
 

The selected design parameters for the simulations are: 
 

r1 = 1.0” (25.4 mm), r2 = 2.0” (50.8 mm) 
T = z2 – z1 = 0.25” (6.4 mm) 
Nm = 32 magnets, 4 magnets per Halbach wavelength 
Br = μoM = 1.5 T (NdFeB-55 rare earth permanent magnets) 
 

These parameters match those of an axial magnetic bearing model currently under development at 
NASA Glenn Research Center (ref. 5).  

Figures 2(a), (b), and (c) compare the radial, angular and axial dependence, respectively, of the Br 
component of the analytical and FEA models at an axial gap distance z = –0.05 in. (–1.3 mm). 
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Figures 3(a), (b), and (c) compare the radial, angular and axial dependence of the Bφ   component of 
the analytical and FEA models at an axial gap distance of z = –0.05 in. (–1.3 mm). Figures 4(a), (b), and 
(c) compare the radial, angular and axial dependence of the Bz component of the analytical and FEA 
models at an axial gap distance of z = –0.05 in. (–1.3 mm). Figures 5(a), (b), and (c) plot the three B field 
components in the first quadrant of the xy plane at an axial gap distance of z = –0.05 in. (–1.3 mm). 
Finally, Figure 6 compares the azimuthal dependence of the three B field components at a larger gap 
distance of z = –0.15 in. (–3.8 mm) and at the radial location which produces the maximum field: 
r = 1.35 in. (34 mm). 
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4. Discussion 
The plots indicate agreement to within 10 percent of peak values between the numerical 

implementation of the analytical model presented in this article and an equivalent FEA model. The radial 
component of the field Br is the weakest of the three and has significant magnitude only at the two radial 
edges of the array. For most practical applications, this field component is of no consequence.  

Both the Bφ and Bz components have higher amplitude and greater spatial extent and achieve their 
maximum amplitudes at radial distances r = 1.35 in. (34 mm) and r = 1.317 in. (33.5 mm), respectively. 
The Bz component is flatter than Bφ over the radial extent of the magnets, as can be seen by comparing 
Figures 4(a) and 5(a). However, both Bφ and Bz must be treated as functions of radial position, Bφ(r) and 
Bz(r) when computing flux linkage and induced emf and current in nearby stator windings. 

At gap values which are small compared to the magnet thickness, T, all three field components 
contain significant harmonics versus angular position φ. The angular frequency of the fundamental is ω1 = 
8π/Nm as can be seen from figures 3(b), 4(b), and 5(b). At an axial position of z = –0.05 in. (–1.3 mm) 
distortion of the sinusoid arises mostly from a 5th harmonic. As z → 0 one finds the presence of even 
higher order harmonics. However, for most practical applications the field is used to compute flux linkage 
in a winding of relatively large spatial extent where the gap is sufficiently large such that all harmonic 
content may be neglected. For larger values of z, only the fundamental sinusoid of frequency f1 remains as 
shown in figure 7. Here the gap value is –0.15 in. (–3.8 mm).  

Post has determined that the axial dependence of the field components is an exponential function 
(ref. 3) of the form B = Bo e-kz

 where k = 2π/λ and λ is the Halbach wavelength, i.e., the width of four 
magnets along the direction of travel. For the axial Halbach array, the direction of travel is azimuthal and 
k is not a constant as in (ref. 3) but a function of radial position given by  
 
 k(r) = Nm/4r  (11) 
 

Summarizing all of this, we can write field component equations in the manner described by Post 
(ref. 3) using the form 
 
 sinφ φ φ −= kz

oB B e  (12a) 

 
 cosφ −= kz

z zoB B e  (12b) 
 
with the understanding that the Bφo, Bzo and k are all functions of r. Bφo,and Bzo give the field component 
strengths of the fundamental at the surface of the Halbach magnet array (z = 0) and at radial location r. 
This gives 
 
 ( )( , , ) ( ) sinφ φφ φ −= k r z

oB r z B r e  (13a) 

 
 ( )( , , ) ( ) cosφ φ −= k r z

z zoB r z B r e  (13b) 
 
as the working equations for the axial Halbach array. From these, dynamic analysis of a rotating array 
may follow by substituting φ = φi –ωt, where φi is the initial angular position of the array and ω is the 
mechanical frequency of rotation. The analysis is simplified if the array is initially positioned with φi = 0. 
Dynamic analysis is explored further in a related article (ref. 5). 

Furthermore, simplifying assumptions may be made regarding the effect of relatively distant magnets 
from the spatial location of interest. The field effects of magnets more than two Halbach wavelengths 
away from a spatial location near the array may be considered negligible. Factoring this into the 
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programming of the numerical computation of the analytical model may reduce computation times 
drastically, especially for very large Nm. Finally, in a related article (ref. 6) Post simplifies further by 
assuming an average value over the span of a nearby stator winding for the peak field, rather than the 
function of radial position indicated above. This produces a closed form approximation to the field that 
may be sufficiently accurate for a variety of applications.  

5. Conclusion 
This article presents analytical expressions for the B field solutions for an axial Halbach array of 

permanent magnets. The analytical expressions are easily implemented in numerical analysis software 
packages. Validation of the analytical model by finite element analysis shows agreement between the two 
methods within 10 percent of the peak value of the field.  
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Appendix 
 

Derivation of B Field Solutions for Transversely Magnetized Sector Magnets 
 

A sector of permanent magnetic material with inner radius r1 and outer radius r2 is positioned such 
that the center axis of the bottom surface coincides with an azimuthal angle (φ = βs) and the bottom face 
of the sector lies in the xy plane (z1=0). Although only field effects from a single sector are considered 
here, the sector is known to be part of a complete circular array of Nm identically-sized magnets and 
therefore subtends an angle β=2π/Nm. The angular component φ is defined over the range [0, 2π]. 

We proceed with the derivation of B  via the vector potential A  in a similar method as Furlani 
(ref. 4). Figure 7 shows the geometry of the magnetization in terms of the spatial integration variables 
r΄,φ΄ and z΄. The magnetization vector M lies in the transverse plane. For a sufficiently large number of 
magnets in the total array, the angle subtended by each individual magnet is small. In this case the 
magnetization may be approximated as having a φ̂  component only, given by  
 

 
ˆM Mφ= ±  (14) 

 
since J M= ∇× and the magnetization has no net circulation, there is no volume current density. The 
magnetization therefore arises from surface current densities on the top, bottom, inner and outer surfaces 
of the magnet sector, where 
 

 ˆMj M n= ×  (15) 
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The four surfaces are described analytically as 
 

 

1 2

1 2

2

1 2

1 2

1

1

1 2

1 2

2

1 2

1 2

'

'

'

'

'

'

'

'

'

'

'

'

r r r

top surface

z z

r r r

bottom surface

z z

r r

inner surface

z z z

r r

outer surface

z z z

β φ β

β φ β

β φ β

β φ β

≤ ≤

= ≤ ≤

=

≤ ≤

= ≤ ≤

=

=

= ≤ ≤

≤ ≤

=

= ≤ ≤

≤ ≤

⎧
⎪
⎨
⎪⎩
⎧
⎪
⎨
⎪⎩
⎧
⎪
⎨
⎪⎩
⎧
⎪
⎨
⎪⎩

 

 
The four surface normals are given by 

 

 

ˆ ( )

ˆ ( )
ˆ

ˆ ( )

ˆ ( )

z top

z bottom
n

r inner

r outer

+

−
=

−

+

⎧
⎪⎪
⎨
⎪
⎪⎩  

(17) 

 
and the four surface current densities are given by 
 

 

ˆ ( )

ˆ ( )

ˆ ( )

ˆ ( )

M

Mr top

Mr bottom
j

Mz inner

Mz outer

−
=

−

⎧
⎪⎪
⎨
⎪
⎪⎩  

(18) 

 
We will derive B from the vector potential function, A, using  

 

 B A= ∇ ×  (19) 
 
and Green’s function  
 

 
2 2 2

1 1
( , ' )

| ' | ' ( ') 2 ' cos( ')
 = G r r

r r r r z z rr φ φ
=

− + + − − −  
(20) 

 
which gives the distance between the spatial location of interest and the variables of integration. The 
vector potential arises from volume and surface current densities, but the volume density has already been 

(16a)

(16b)

(16c)

(16d)
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shown to be zero. Therefore the vector potential will arise from four surface integrals of surface current 
densities given by 
 

 

( )
( ) '

4 | ' |
o M

S

j r
A r da

r r
μ
π

=
−∫

 
(21) 

 
Substituting equation (16) into this expression for jM gives 

 

 

2 2 2 2

1 1 1 1

2

1
' '

ˆ ˆ
' ' ' ' ' '

| ' | | ' |
( ) ( 1)

4
j j

r z
jo

s
j r zz z r r

r z
r d dr r d dz

r r r r

M
A r

β β

β β

φ φ
μ

π =
= =

− −
= ± − −

⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪
⎢ ⎥ ⎢ ⎥⎨ ⎬
⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

∑ ∫ ∫ ∫ ∫
 

(22) 

 
but r̂  is a function of the angular position variable φ'. Substituting the transformation 
 
 

 ˆ ˆ ˆcos ' sin 'r x yφ φ= +  (23) 
 
and arranging terms gives 
 

 

2

1

2

1

2 22

1
1 1

2 2

1 1

'

'

'

ˆcos '
' ' '

| ' |

ˆsin '
' ' '

| ' |
( 1)

4

ˆ
' ' '

| ' |

( )

j

jo

j
j

j

r

r z z

r

s
r z z

z

z r r

x
r d dr

r r

y
r d dr

r r
M

z r d dz
r r

A r

β

β

β

β

β

β

φ
φ

φ
φ

μ
π

φ

=

=

=

=

−

−

⎧ ⎫⎡ ⎤⎪ ⎪⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎣ ⎦
⎪ ⎪
⎪ ⎪⎡ ⎤⎪ ⎪⎢ ⎥− ⎨ ⎬⎢ ⎥⎪ ⎪⎣ ⎦⎪ ⎪
⎪ ⎪⎡ ⎤
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥−
⎪ ⎪⎣ ⎦⎩ ⎭

+

= ± −

∫

∑

∫

∫ ∫

∫ ∫
 

(24) 

 
which is the vector potential at the point of interest in terms of the Cartesian unit vectors. Projecting these 
terms back into cylindrical coordinates using 
 
 ˆˆ ˆcos sinφ φφ= −x r  (25a) 
 
 ˆˆ ˆsin cosφ φφ= +y r  (25b) 
 
one may collect like terms and simplify using angle sum and difference trigonometric identities to obtain 
the cylindrical coordinate components of the vector potential function as 
 

 

2 2

1 1

,

2
1

1
'

( ) ( 1)
cos( ') ' ' '

4 | ' |
j

o
r s

r
j

j r z z

r
M

A r d dr
r r

β

β

μ φ φ φ
π

+

=
=

−

⎧ ⎫⎡ ⎤− −⎪ ⎪⎢ ⎥= ⎨ ⎬−⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

± ∑ ∫ ∫
 

(26a) 
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2
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22
1
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1 1 '
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z z
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μ φ φ φ
π
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⎧ ⎫⎡ ⎤−⎪ ⎪⎢ ⎥= ± − ⎨ ⎬−⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
∑ ∫ ∫

 

(26b) 
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(26c) 

 
and the final step is to take the curl of A in cylindrical coordinates to obtain the individual components of 
the B field. 
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(27a) 
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(27b) 
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